博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记
阅读量:4953 次
发布时间:2019-06-12

本文共 4360 字,大约阅读时间需要 14 分钟。

一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记

曾经某个下午我以为我会了FWT,结果现在一丁点也想不起来了……看来“学”完新东西不经常做题不写博客,就白学了 = =

我没啥智商 ,网上的FWT博客我大多看不懂,下面这篇博客是留给我我再次忘记FWT时看的,所以像我一样的没智商选手应该也能看懂!有智商选手更能看懂咯!

(写得非常匆忙,如有任何错误请在评论区指正!TAT)

什么是FWT

FWT是用来快速做位运算卷积的。位运算卷积是什么?给出两个数组\(A\)\(B\)(长度相等且是2的整数次幂),求一个数组\(C\),满足\(A * B = C\),这个“\(*\)”的定义如下:\[A * B = C \Leftrightarrow C_k = \sum_{i\oplus j = k}A_i \cdot B_j\] 其中“\(\oplus\)”是一种位运算,可以是与(&)、或(|)、异或(^)。

为什么要有一个变换呢?回想一下FFT,FFT求\(A*B\)时(这个“\(*\)”是多项式乘法那个卷积),是把\(A\)\(B\)各自“变换”了一下,然后把变换后的数组按位相乘,得到“变换后的\(C\)”——\(tf(C)\),然后把\(tf(C)\)逆变换回去,得到\(C\)数组。

FWT做位运算卷积的原理也类似,想要实现快速位运算卷积,就要找到一种变换\(tf\)满足\(tf(A*B) = tf(A)\times tf(B)\),这里的“\(\times\)”表示两个数组按位相乘(和那个表示卷积的“\(*\)”不是一个符号)。

再强调一下本文中符号的定义,在下文中:

\[A * B = C \Leftrightarrow C_k = \sum_{i\oplus j = k}A_i \cdot B_j\]

\[A \times B = C \Leftrightarrow C_i = A_i \cdot B_i\]

用FWT解决或卷积

或卷积,就是把\(A * B = C \Leftrightarrow C_k = \sum_{i\oplus j = k}A_i \cdot B_j\)中的“\(\oplus\)”定义为按位或运算(|)。我们的目标是找到一种变换\(tf\)满足\(tf(A*B) = tf(A)\times tf(B)\),还要找到一种逆变换\(utf\),能把\(tf(C)\)变回\(C\)

目标

  • 找到\(tf\)
  • 找到\(utf\)

找到\(tf\)

这是位运算,所以应该按位分治。

根据下标在最高位是0还是1,把\(A\)数组拆成两个数组\(A_0\)\(A_1\)\(A_0\)\(A\)中下标最高位是0的元素组成的数组,\(A_1\)\(A\)中下标最高位是1的元素组成的数组——实际上,\(A_0\)就是\(A\)的前一半,\(A_1\)\(A\)的后一半。用\(A = (A_0, A_1)\)表示这种“等式右边两个数组首尾相接就能得到等式左边的数组”的关系。

定义\[tf(A) = (tf(A_0), tf(A_1) + tf(A_0))\]

\(A\)长度为1,无法再划分时,\(tf(A) = A\)

对了,显然\(tf(X + Y) = tf(X) + tf(Y)\),这里“\(+\)”就是按位相加。

(这个\(tf\)是怎么找到的?讲了讲……但是即使我知道了如何找到或卷积的\(tf\),异或卷积的我还是找不出来……还是甩出这个式子然后证明它吧。)

来证明一下\(tf(C = A * B) = tf(A) \times tf(B)\)

\(A, B\)长度均为1时显然。

\(A, B\)长度大于1时 ,我们使用归纳法——可以假定“长度除以2\(tf(C = A * B) = tf(A) \times tf(B)\)是成立的”,即\[tf(A_0*B_0) = tf(A_0) \times tf(B_0)\\tf(A_1 * B_1) = tf(A_1) \times tf(B_1)\\tf(A_0 * B_1) = tf(A_0) \times tf(B_1)\\tf(A_1 * B_0) = tf(A_1) \times tf(B_0)\]如果我们在这四个条件的基础上能证明\(tf(C = A * B) = tf(A) \times tf(B)\),则这四个条件递归证明即可,递归到长度为1时,就直接证毕了。

那么如何证明当前这一层\(tf(C = A * B) = tf(A) \times tf(B)\)呢?

首先,\[C=(A_0 * B_0, A_1 * B_0 + A_0 * B_1 + A_1 * B_1)\]。这是可以理解的:在\(A\)中最高位是0的一个下标,和在\(B\)中最高位是0的一个下标,或起来还是0,所以他俩卷积的结果应该放在\(C_0\)中,其余三项同理。

然后从等式左边推一下,\[\begin{align*}tf(C) &= (tf(A_0 * B_0), tf(A_1 * B_0 + A_0 * B_1 + A_1 * B_1) + tf(A_0 * B_0))\\&=(tf(A_0*B_0), tf(A_1*B_0) + tf(A_0*B_1) + tf(A_1 * B_1) + tf(A_0 * B_0)) \\ &= (tf(A_0) \times tf(B_0), tf(A_1) \times tf(B_0) + tf(A_0) \times tf(B_1) + tf(A_1) \times tf(B_1) + tf(A_0)\times tf(B_0))\end{align*}\]

这一步是基于\(tf\)的定义以及上面的那四个条件的。

然后从等式右边推一下,\[\begin{align*}tf(A) \times tf(B) &= (tf(A_0), tf(A_1) + tf(A_0)) \times (tf(B_0), tf(B_1) + tf(B_0)))\\&=(tf(A_0) \times tf(B_0), tf(A_0)\times tf(B_0) + tf(A_1) \times tf(B_0) + tf(A_0) \times tf(B_1) + tf(A_1) \times tf(B_1))\end{align*}\]

这一步是基于“\(\times\)”符号的意义——按位相乘得出来的。

这样一来,等式两边恰好相等诶!

所以我们已经找到了或卷积的\(tf\)\[tf(A) = (tf(A_0), tf(A_1) + tf(A_0))\]

找到\(utf\)

目标:找到一个\(utf\)使得\(utf(tf(A)) = A\)

这相当于把上面那个式子倒着推,怎么个倒推法呢?

正着推是已知\(A = (A_0, A_1)\),求\(tf(A) = (tf(A)_0, tf(A)_1)\)

倒着推就是已知\(tf(A) = (tf(A)_0, tf(A)_1)\),求\(utf(tf(A)) = A = (A_0, A_1) = (utf(tf(A_0)), utf(tf(A_1)))\)

那么根据上面的\(tf(A) = (tf(A_0), tf(A_1) + tf(A_0))\),有\(tf(A)_0 = tf(A_0), tf(A)_1 = tf(A_0) + tf(A_1)\)

所以直接得到\(tf(A_0) = tf(A)_0\), 两式相减又得到\(tf(A_1) = tf(A)_1 - tf(A)_0\)

所以\(utf(tf(A)) = A = (A_0, A_1) = (utf(tf(A_0)), utf(tf(A_1)) = (utf(tf(A)_0), utf(tf(A)_1 - tf(A)_0))\)

\(tf(A)\)替换成\(A\),得到\(utf(A) = (utf(A), utf(A_1) - utf(A_0))\)

这就是逆变换\(utf\)了。

总结

或卷积的FWT:

\[tf(A) = (tf(A_0), tf(A_1) + tf(A_0))\]

\[utf(A) = (utf(A), utf(A_1) - utf(A_0))\]

用FWT解决与卷积

与卷积和或卷积非常类似。

\(C = (A_0*B_0 + A_0*B_1 + A_1 *B_0, A_1*B_1)\)

定义\[tf(A) = (tf(A_0) + tf(A_1), tf(A_1))\]

类似上面或卷积的证明过程可以证明它。

类似地,\[utf(A) = (utf(A_0) - utf(A_1), utf(A_1))\]

用FWT解决异或卷积

和上面的也很类似,但是异或卷积的式子更复杂一丁点。它是:

\[tf(A) = (tf(A_0) + tf(A_1), tf(A_0) - tf(A_1))\]

\[utf(A) = (\frac{utf(A_0) + utf(A_1)}{2}, \frac{utf(A_0) - utf(A_1)}{2})\]

证明嘛……和上面的或卷积证明也差不多!

板子

我的异或卷积板子:

ll inc(ll x, ll y){return (x += y) >= P ? x - P : x;}ll dec(ll x, ll y){return (x -= y) < 0 ? x + P : x;}void transform(ll *a, int n, bool inv){    for(int l = 2; l <= n; l <<= 1){    int m = l >> 1;    for(ll *p = a; p != a + n; p += l)        for(int i = 0; i < m; i++){        ll t = p[i + m];        p[i + m] = dec(p[i], t);        p[i] = inc(p[i], t);        }    if(inv)        for(int i = 0; i < n; i++)        a[i] = a[i] * inv2 % P;    }}

异或已经是写起来最长的啦,其他两个都特别短~

转载于:https://www.cnblogs.com/RabbitHu/p/9182047.html

你可能感兴趣的文章
优秀辅导员工作案例
查看>>
高校突发事件应急处置方法
查看>>
Sublime搭建Java程序运行环境
查看>>
班级管理
查看>>
声律启蒙
查看>>
Web测试与App测试的区别
查看>>
app内部H5测试点总结
查看>>
UI Recorder安装与使用
查看>>
自动化案例
查看>>
Container With Most Water
查看>>
本博客食用指南
查看>>
A·F·O小记
查看>>
[CTS2019]珍珠——二项式反演
查看>>
triplet
查看>>
NOI2019 游记——一切都是最好的安排
查看>>
LibreOJ NOI Round #2 Day 1
查看>>
[NOI2016]国王饮水记
查看>>
233
查看>>
再探容斥好题——ROOK
查看>>
CF908G New Year and Original Order
查看>>